- BLAKE, D., CALVIN, G. & COATES, G. E. (1959). Proc. Chem. Soc. p. 396.
- CARTER, F. L. & HUGHES, E. W. (1957). Acta Cryst. 10, 801.
- COATES, G. E. & PARKIN, C. (1961). J. Inorg. Nucl. Chem. 22, 59.
- Сноυ, К. Т. (1963). К'о-hsueh t'ung-pao, 8, 47.

Acta Cryst. (1966). 20, 508

- CRUICKSHANK, D. W. J., PILLING, D. E., BUJOSA, A., LO-VELL, F. M. & TRUTER, M. R. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis, p. 32. Oxford: Pergamon Press.
- HOARD, J. L. (1933). Z. Kristallogr. 84, 231.
- International Tables for X-ray Crystallography (1962). Vol. III, pp. 202, 211. Birmingham: Kynoch Press.
- KIMBALL, G. E. (1940). J. Chem. Phys. 8, 188.
- LIDE, D. R. & MANN, D. E. (1958). J. Chem. Phys. 29, 914. MATHEWS, F. S. & LIPSCOMB, W. N. (1959). J. Phys. Chem. 63, 845.
- NYBURG, S. C. & HILTON, J. (1959). Acta Cryst. 12, 116.
- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- ROLLETT, J. S. & SPARKS, R. A. (1960). Acta Cryst. 13, 273.

The Crystal Structure of some Alkaline Earth Metal Uranates of the Type M₃UO₆*

BY H. M. RIETVELD

Reactor Centrum Nederland, Petten (N.H.), The Netherlands

(Received 17 May 1965 and in revised form 30 July 1965)

The compounds Ca_3UO_6 and Sr_3UO_6 are isomorphous and can be regarded as deformed substituted perovskite structures. They have been refined by a full-matrix least-squares method using X-ray and neutron-diffraction powder data. The uranium atoms are surrounded by six oxygen atoms at an average distance of 2.13 Å.

Introduction

As part of a programme of research on uranium compounds, a powder diffraction study was undertaken on the alkaline earth metal uranates Ca_3UO_6 , Sr_3UO_6 and Ba_3UO_6 . The crystal symmetry of the first two compounds had been previously determined to be orthorhombic (Bereznikova, Ippolitova, Simanov & Kovba, 1961; Ippolitova, Bereznikova, Kosynkin, Simanov & Kovba, 1961; Sleight & Ward, 1962) while the symmetry of the latter had been described as cubic by Sleight & Ward (1962).

The calcium and strontium uranates were prepared by igniting stoichiometric mixtures of U_3O_8 and $CaCO_3$ or $Sr(NO_3)_2$ in air at temperatures of 1000°C for periods of weeks (Cordfunke & Loopstra, 1965). The barium uranate had to be prepared by ignition of a stoichiometric mixture of U_3O_8 and $Ba(NO_3)_2$, in a nickel boat in an argon atmosphere at 1000°C, to avoid the reaction of any of the components of the mixture with the normally used platinum container.

The calcium and strontium uranate samples were free from detectable amounts of impurities, but the barium compound showed some very faint impurity lines on its X-ray powder diffraction diagram.

Experimental

X-ray diffractograms of the calcium and strontium uranates were recorded with Ni-filtered Cu $K\alpha$ radi-

ation, on a Philips PW-1050 powder diffractometer, which obviates the need for absorption corrections due to the special sample orientation. In addition, and in order to obtain the highest possible resolution on these powder diagrams, Guinier films of all three samples were taken with Cu $K\alpha$ radiation. These diagrams were superimposed with NaCl lines for calibration purposes.

Neutron-diffraction data of Ca₃UO₆ and Sr₃UO₆ were recorded on the powder diffractometer at the Petten HFR. No absorption corrections were necessary, because of the small absorption of these materials for thermal neutrons. The sample was contained in a cylindrical vanadium sample holder of 0.25 mm wall thickness and 20 mm diameter. Monochromatic radiation with a wavelength of 1.094 Å was obtained from the 200 reflexion of a copper monochromating crystal. Soller slits of 5' angular divergence were mounted in front of the BF₃ counter and slits of 5¹/₂' angular divergence were placed between the reactor and the monochromator. With the reactor operating at 20 MW thermal power, it took one week to collect a set of data.

Unit-cell determination

An inspection of the Guinier films showed, in all cases, line splitting that indicated a lower symmetry than was previously determined. The special focusing action of this type of camera, which reduces the α_1 and α_2 resolution, made it possible to observe these line splittings with an accuracy of 0.025° in 2 θ . In the case of the calcium and strontium compounds, it was possible to account for this by taking a monoclinic cell instead of an orthorhombic cell. The barium uranate lines

^{*} Work sponsored jointly by Reactor Centrum Nederland, The Netherlands, and Institutt for Atomenergi, Norway.

could be indexed, except for three very weak lines, on a tetragonal cell which was one-half of the previously mentioned cubic cell. The cell constants were adjusted by means of a least-squares technique to give the best agreement between calculated and observed line spacings, expressed as Q values where $Q = 1/d^2 \times 10^4$ Å⁻². A list of these values appears in Table 1, and the cell constants are shown in Table 2.

It may be noticed here, that on these Guinier films, only reflexions with h+k+l=2n, indicating a bodycentred cell, were recorded. This is partly caused by the relatively short exposure-times, but also by the fact that the uranium and alkaline earth metal ions, which act as heavy scatterers for X-rays, form an approximately body-centred unit-cell. Longer exposures on the X-ray spectrometer yield lines which are no longer consistent with this condition. In particular, reflexions obtained by neutron diffraction, in which case all atoms have approximately the same scattering power, show clearly that the actual cell is not body-centred (Table 5).

Structure determination

In view of the fact that there was some uncertainty in the choice of the unit cell of Ba_3UO_6 owing to the presence of three unindexed lines, it was decided not to pursue the analysis of this compound any further.

An inspection of the X-ray and neutron diffraction diagrams of Ca_3UO_6 showed that all 0k0 reflexions with k odd were systematically absent, a condition which corresponds to that of the monoclinic spacegroups $P2_1$ or $P2_1/m$. Using the corrected peak intensities of 43 well resolved lines on the Guinier film of this uranate, a three-dimensional Patterson synthesis

Table 1.	Observed	and	calculated	Q	values
----------	----------	-----	------------	---	--------

 $Q = 10^4 \times 1/d^2 \text{ Å}^{-2}$

	Ca_3UO_6			Sr ₃ UO ₆						
hk l	Qcalc	Qobs	hk l	Qcalc	Qobs	hk l	Qcalc	$Q_{\rm obs}$		
011	427	426	011	399	396	011	378	376		
10Ī	446	447	101	417)	416	002	500	502		
101	454	455	101	420	416	110	506	503		
002	581	582	110	544	544	020	1013	1010		
110	587	586	002	547	544	121	1391	1389		
020	1127	1127	020	1044	1048	004	2001	1998		
112	1159	1159	112	1088)	1000	220	2025	2024		
112	1176	1176	112	1093	1089	031	2403	2403		
200	1219	1218	200	1127	1129	132	3032	3033		
121	1573	1573	121	1465		231	3416	3412		
121	1581	1581	121	1467	1457	040	4050	4046		
013	1588	1588	013	1492	1495	141	4428	4423		
103	1624	1626	211	1522)		006	4502	4495		
211	1638	1637	211	1528	1525	330	4556	4552		
022	1707	1709	022	1594	1590	240	5063	5056		
202	1783	1783	202	1668	1662	143	5429	5425		
202	1817	1817	202	1672	1679	341	6453	6459		
202	2222	2222	202	2174	2175	541	0455	0437		
220	2322	2323	220	2174	2175	Uni	ndeved and nr	abably		
021	2540	2340	004	2107	2105	OIII	impurity lines			
122	2080	2000	122	2424	2548	20	2070 2080 and 6051			
213	2702	2701	213	2555	2540	20	70, 5000 and C	000		
213	2/01	2/02	213	2011	2014					
114	2910	2909	127	2020	2020					
114	2920	2924	132	2100 (3186					
222	2943	2942	152	3100 J	2244					
125	3023	2412	207	3234	2201					
132	3412	2412	204	2225	2242					
132	3429	3429	312	2222	2250					
024	3449	3448	512	3331	2220					
204	3508	3507	015	30/9	2720					
312	3581	35/9	321	3/15	3720					
015	3910	3909	321	3/23	3/28					
321	4028	4028	040	4190	4194					
040	4507	4506	041	4327	4326					
224	4635	4634	224	4372	43/2					
224	4702	4704	400	4506	4499					
400	4877	4877								
323	5139	5142								
			Table 2.	Unit-cell d	limensions					
anate	<i>a</i> (Å)		b (Å)	C	(Å)	α	β	γ		
Ca	5.7278 ± 0.0	005	5·9583 <u>+</u> 0·0005	8.3008	3 ± 0.0007	90	90.573 ± 0.008	90		
Sr	5.959 ± 0.0	02	6.179 ± 0.002	8.553	± 0.004	90	90.19 ± 0.04	90		
Ba	6.285 ± 0.0	02	6.285 ± 0.002	8.943	+0.006	90	90	90		

was computed which yielded approximate positions for the U and three Ca atoms.

The U-Ca peaks were markedly elongated in the y direction, indicating that they were lying slightly out of the XZ-plane. This eliminates the possibility that this plane can be a mirror plane, and this, therefore, leaves only $P2_1$ as a possible choice. In addition, because the U atom was not in a special position, and only one U-U vector was found in the Patterson synthesis, it was concluded that there were only two molecules of Ca₃UO₆ in the unit cell. This was later confirmed by density measurements.

A three-dimensional electron-density synthesis with phases given by U and the three Ca atoms in the asymmetric unit cell yielded improved coordinates for these atoms and also six rather badly defined peaks. A repeated application of this procedure improved the shape of these peaks, and subsequently they were identified as belonging to the six oxygen atoms in the asymmetric unit cell. The fact that positions of oxygen atoms could be obtained from these rather inaccurate X-ray diffraction data was surprising and may be regarded as purely fortuitous: the same treatment of strontium uranate failed to reveal the positions of the oxygen atoms.

In view of the close resemblance between the calciumand strontium-uranate X-ray and neutron-diffraction diagrams, these compounds can be regarded as isomorphous, and no further determination of the strontium-uranate structure was required at this stage. The X-ray diffraction diagram of the barium compound also shows a resemblance to those of the other two uranates, but without a neutron diffraction diagram it can only be assumed that the cell formed by the heavy atoms will be isomorphous with the others.

Structure refinement

While the Guinier-film intensities were well resolved, their peak intensities, which were not corrected for absorption, could only be regarded as rather crude approximations to the integrated intensities that actually should be used for further refinement of the structure. However, the integrated intensities available from the X-ray and neutron diffraction diagrams suffered from overlap to such an extent that it was not possible to separate the peaks with any degree of accuracy. Resort, therefore, had to be taken to a special procedure that made full use of the information contained in these accurately measured, but overlapping, intensities. To this end, a structure-factor least-squares program was written that was especially adapted to the particular conditions met in powder-diffraction work.

The program is coded in machine language and uses the full-matrix refinement method. This requires a large storage capacity of the computer: with the available Electrologica X-1 computer, having a storage capacity of 8192 words, it is possible to refine up to 33 selected parameters simultaneously. These parameters consist of the overall isotropic temperature factor, the overall scale factor, and anyone of the individual isotropic temperature factors or atomic coordinates. The function to be minimized is defined as $\sum w (\sum j F_{obs}^2 - \sum j F_{calc}^2)^2$ where F_{obs} and F_{calc} are the observed and calculated structure factors, j is the multiplicity of the reflexion, w its weight, Σ the sum of the overlapping reflexions which are measured as one intensity, and Σ the sum over the measured intensities, *i.e.* $\sum j F_{obs}^2$ after correcting for Lorentz (and polarization) factors. The only restriction on the structures to be refined is that their symmetry should be lower than tetragonal (*i.e.* no permutations in the coordinates of the equivalent positions

mutations in the coordinates of the equivalent positions are allowed). In spite of the use of a full-matrix refinement procedure, it takes up to ten cycles to refine a structure. In addition, it is necessary to apply a 'relaxation factor' to the calculated parameter shifts. This factor sometimes has to be as small as 0.2, particularly when the excess of the number of intensities over the number of least-squares parameters is not very large or when the initial parameters have been badly chosen.

The X-ray scattering factors for the U⁶⁺, Ca²⁺ and Sr²⁺ ions and the *O* atoms, used in the refinement of these uranate structures, were those computed by Cromer & Waber (1964). The neutron scattering-lengths were taken to be 8.5 for U, 4.9 for Ca, 5.7 for Sr, and 5.77 for *O* (all in units of 10^{-13} cm). No attempt was made to refine the individual isotropic temperature factors, because these appeared to be ill defined because of the small range (0.11 Å⁻²) of sin² θ/λ^2 over which the intensities were measured. Instead, these temperature factors were set at initial values and corrected with the calculated change in the overall isotropic temperature factor. The values were B=0.1 Å² for the U atom, 0.6 Å² for Ca, 0.3 Å² for Sr and 1.5 Å² for the *Q* atom.

For the refinement of calcium uranate, 45 integrated intensities, comprising 100 independent reflexions, were measured from the X-ray diffractogram, and, in addition, 17 unobserved reflexions were included having intensities arbitrarily set at one-tenth of the integrated background at their calculated position. All were corrected for Lorentz and polarization factors. In the absence in this case of any reliable criterion for assessing the accuracy of the measured intensities, the leastsquares weights were put equal to one for the observed and to one-tenth for the unobserved reflexions. With the coordinates from the final electron-density synthesis as initial parameters, twelve refinement cycles were needed to reduce the R index, defined as

$$\sum_{i} \left| \sum_{r} jF_{obs}^{2} - \sum_{r} jF_{calc}^{2} \right| / \sum_{i} \sum_{r} jF_{obs}^{2},$$

from 0.208 to 0.051. At this stage no further reduction in the value of the minimum function could be obtained, and all calculated shifts were less than 0.3σ where σ is the standard deviation in the parameter computed in the usual manner from the least-squares calculation.

The neutron-diffraction counter data of Ca_3UO_6 consisted of 33 intensities and 17 unobserv edintensities which were put equal to half the standard deviation of the background at their calculated positions. These intensities, after having been corrected for the Lorentz factor, were used to refine the coordinates obtained from the least-squares refinement of the X-ray data. The weight of the reflexions was calculated from

Fig. 1. Perspective drawing of the idealized structure of Ca_3UO_6 . The double lines indicate the actual unit cell of the uranate and the heavy lines the perovskite-type subcell.

the expression $w=1/(N_p+N_b)$ where N_p is the integrated peak plus background intensity and N_b the background intensity. The weights of the unobserved reflexions were arbitrarily set at one tenth of this value. It took eight cycles to reduce R from 0.19 to 0.061. The final coordinates, together with those obtained from the X-ray refinement, are listed in Table 3.

The refinement of strontium uranate was carried out with neutron diffraction data only. There were available 38 intensities and 19 unobserved intensities which were treated in the same way as described above. With

Fig. 2. Perspective drawing of the actual structure of Ca_3UO_6 , showing clearly the deformation of the idealized structure of Fig. 1.

Table 3.	Final	least	sauares	coordinates	of	Ca ₂ UO ₄
14010 5.	I man	icusi	byuur cb	coorainaico	<i>v</i>	003006

	X-ray diffraction						Neutron diffraction						
	$\overline{x/a}$	$\sigma(x/a)$	y/b	$\sigma(y/b)$	z/c	$\sigma(z/c)$	x/c	ι σ	r(x/a)	y/b	$\sigma(y/b)$	z/c	$\sigma(z/c)$
U	0.2538	0.0008	0.0000		0.2516	0.0004	0.250	58 O·	0066	0.0000		0.2441	0.0041
Ca(1)	0.2428	0.0059	0.9961	0.0180	0.7448	0.0019	0.25	71 0-	0121	0.9893	0.0102	0.7398	0.0064
Ca(2)	0.2652	0.0051	0.4612	0.0089	0.9975	0.0022	0.270	08 0	0084	0.4467	0.0071	0.0121	0.0053
Ca(3)	0.7628	0.0041	0.0498	0.0082	0.4932	0.0024	0.76	18 0-	0078	0.0595	0.0075	0.4685	0.0046
O(Ì)	0.6481	0.0075	0.4235	0.0137	0.5142	0.0052	0.650	04 0.	0042	0.3894	0.0080	0.4959	0.0054
O(2)	0.5912	0.0086	0.1577	0.0126	0.2140	0.0020	0.569	95 0-	0089	0.1394	0.0065	0.2138	0.0048
O(3)	0.0491	0.0070	0.2697	0.0114	0.3300	0.0109	0.06	55 0.	0073	0.2429	0.0087	0.3261	0.0042
O(4)	0.1208	0.0087	0.0824	0.0166	0.0089	0.0059	0.108	83 0.	0071	0.0290	0.0063	0.0116	0.0051
O(5)	0.0307	0.0093	0.3209	0.0144	0.6568	0.0103	0.038	86 0.	0063	0.2986	0.0056	0.6711	0.0040
O(6)	0.5927	0.0100	0.1827	0.0140	0.7911	0.0083	0.576	52 O-	0084	0.1764	0.0078	0.8168	0.0020

Table 4. Final least-squares coordinates of Sr₃UO₆

	x/a	$\sigma(x/a)$	y/b	$\sigma(y/b)$	z/c	$\sigma(z/c)$
U	0.2503	0.0045	0.0000		0.2424	0.0023
Sr(1)	0.2420	0.0041	0.9917	0.0064	0.7564	0.0026
Sr(2)	0.2505	0.0042	0.4641	0.0060	0.0010	0.0037
Sr(3)	0.7572	0.0051	0.0588	0.0053	0.5081	0.0038
ŌÌÌ	0.6594	0.0041	0.4012	0.0020	0.4946	0.0036
O(2)	0.5328	0.0043	0.1287	0.0053	0.2324	0.0036
OÌ	0.1014	0.0037	0.2466	0.0053	0.3075	0.0022
O(4)	0.1312	0.0067	0.0003	0.0048	0.0098	0.0037
O (5)	0.0750	0.0041	0.2947	0.0066	0.6753	0.0032
0(6)	0.5335	0.0032	0.1910	0.0038	0.8152	0.0017

the calcium uranate coordinates as initial parameters, 9 cycles were needed to decrease R from 0.22 to 0.094. A list of the final coordinates appears in Table 4.

Discussion

A list of the final coordinates appears in Table 4. The values of jF_{obs}^2 and jF_{calc}^2 for the neutron diffraction data of the calcium and strontium compounds and of the X-ray data of the calcium compound are listed in Table 5.

The two sets of coordinates for calcium uranate (see Table 3) can be considered to be equal within the limits set by their standard deviations. For a bond length and bond angle calculation however, it was decided to use the X-ray coordinates of the U and Ca atoms

Table 5. Calculated and	d observea	lstructure	factors	of	Ca_3UO_6	and	Sr ₃ U	O_{ϵ}
-------------------------	------------	------------	---------	----	------------	-----	-------------------	----------------

Neutron data in units of $0{\cdot}25 \times 10^{-26} \mbox{ cm}^2$ and X-ray data in units of $10^2 e^2$

		Ca ₃ U0 ₆			Ca3U06 Sr3UC6		Cr3006								
	X-1	ray	neu	tron		X-	ray	neu	tron		neu	tron		neu	trọn
hkl	ΣjF ² r ^{obs}	$\sum_{r} jF_{calc}^2$	ΣjF ² r ^{obs}	ΣjF ² r calc	hkl	ΣjF ² r ^{obs}	$\sum_{r}^{\Sigma j F^2} calc$	EjF ² r ^{obs}	ΣjF ² r calc	hkl	ΣjF ² r ^{obs}	rjr ² calc	hk1	ΣjF ² r obs	ΣjF ² r ^{calc}
001 100 011 101	< 1 < 1 796	3 0 825	< 3 < 6	և	204 312 223	2760	2646			001 100 011	< 1 8 197	3 1 156	204 204 312	11001	10250
101 002 110	692 1143	735 1242	346 393	293 454	312 223 124	1750 13 < 9	1676 22 11	9181	8926	101 C22 110	100 289	68 500	223 223 005	82 < 32 < 32	129 129 18 7
111 012 102 102 020	46 < 1 < 1 .< 1 868	37 2 2 3 958	35 < 16 < 16 < 16	139 31 110 12	124 214 033 214 320	< 10 < 10 4 ch	0 1 491	307 70	385 123	111 012 102 102 020	142	93 73	230 124 124 214 320 214	292	301
112 112 200 021 003 201	3596 839 < 3 < 4 < 3	3922 935 1 5 2	11236 262	169% 336	231 231 01 <u>5</u> 105 321	1783 257	1806 276	1870 75	0136 103	112 112 200 021 00 <u>3</u> 201	2013 112 < 13	2672 273 17	033 231 231 015 105 105	1110	1186
201 120 210 121	 3 59 	1 9 44	40 193 1204	13 165 1244	303 321 303 133	1323 195	1323 222	644 < 75	64 1 25	201 120 210 121	<pre> 13 163 951</pre>	1 251 1054	32 1 321 303 303	1126	1230
013 103 103 211	1665	1851	į		115 115 313 235	138 < 8 < 11 < 12	111 21 7 3	701	773	013 103 103 211	000	(19	133 115 115 115	723	716
211 022 202 202 113 113 122	1784 369 186 186 140	1796 430 231 216 87	4621 558 239 1407	4404 576 177 1331	232 313 322 322 040 224 041	32 < 9 9 510	21 8 9 506 1301	3110 340	3194 401	211 022 202 202 113 113	3220 1024 902 1415	3329 935 1365	232 232 313 322 322 040	1084 137 < 47 931	2245 151 66 921
122 212 212 004	75 < 4 < 4	63 6 4	1643 253	1676 240	224 025 205	1221 < 13 < 13 < 15	1215	2199	2250	122 212 212	1058	1700	225	5297	5200
220 023 221	3135 60	3143 36	4861 206	5016 285	034 400 205	< 21 551	573	2691 292 < 88	2675 309 5	220 023 221	6070	3727	140 205 034	2079	2603
203 203 014 104 031 123 300	124 < 5 < 5 < 5 < 5 472	84 0 1 4 10 513	606 47 240	608 55 268	141 141 401 233 125 401 125 233	899 < 16 < 16	950 2 0	< 93 190	110 298	221 203 203 014 104 104 031 123 200	790 < 23 < 23 74 < 24 < 24 × 24 × 44	705 154 104 35 85	205 141 141 401 233 304 233	566	755
123 213 213	1457	1505	980	867	042 215 304	3178	3129			123 213 213	693	582	304 125 125		
130 301 114 301 222	1460	1453	1191	1211	323 134 410 215 134					130 301 222 114	1705	2111	410 215 323 134 215		
114 222 131 131	3173 301	3100 184	2822	2793	323 006 330 41 1	5665	2658			222 114 131	2235	2000	323 134 330	6745	6629
310 032 31 1 311	540 < 8 < 6 53	574 2 13 27	2175 181 488	2219 168 492	314 411 142 314	1616	1776			310 032 31 1 311	2518 781	21 21 827	411 000 314 314	•622	784
302 302 132 132	< 6 < 8	2	< 61 < 61	1 28	142 33 1 402 331	6830	7252			302 302 132 132	230	323 80	142 142 33T 331		
024 20 4	4626 766	4595 772	5581	5478	402 105 016	236	241			024	3538	3571	402	965	1223

and the neutron coordinates of the O atoms. This was done because X-ray diffraction techniques can define the position of the heavy U and Ca atoms better than the position of the relatively light O atoms, a fact which is brought out by the smaller standard deviations in the coordinates of the former atoms. Table 6 lists the more important atomic distances and angles of the calcium and strontium compounds.

Table 6. Atomic distances and angles

	Distances				
	Ca ₃ UO ₆	Sr ₃ UO ₆			
UO(1)	2·26±0·09 Å	2·39 ± 0·12 Å			
U - O(2)	2.02 ± 0.10	1.86 ± 0.12			
UO(3)	1·91 ± 0·09	1.85 ± 0.09			
UO(4)	2.16 ± 0.08	2.11 ± 0.12			
UO(5)	2.16 ± 0.07	2.42 ± 0.12			
UO(6)	2.24 ± 0.09	2.36 ± 0.09			
.M(1)–O(1)	2.19 ± 0.11	2.30 ± 0.12			
M(1)–O(2)	2.41 ± 0.21	2.62 ± 0.15			
M(1)-O(3)	2.39 ± 0.17	2.60 ± 0.11			
M(1)–O(4)	2.36 ± 0.09	2.27 ± 0.13			
M(1)–O(5)	2.23 ± 0.19	2.23 ± 0.16			
M(1)–O(6)	2·27 <u>+</u> 0·15	$2 \cdot 19 \pm 0 \cdot 12$			
	And	zles			
	Ca ₃ UO ₆	Sr ₃ UO ₆			
U-O(1)-M(1)	$134.0 \pm 2.8^{\circ}$	139·5 ± 3·4°			
U = O(2) = M(1)	137.9 ± 2.7	146.0 ± 3.8			
U-O(3)-M(1)	146.4 ± 2.3	142.6 ± 3.0			
U - O(4) - M(1)	137.1 ± 2.4	144·3 ± 5·0			
U-O(5)-M(1)	140.6 ± 2.0	134.6 ± 3.4			
U-O(6)-M(1)	135·2 ± 3·1	147·5 ± 2·4			

Fig. 1 shows a perspective drawing of an idealized substituted perovskite structure. The large parallellepiped indicates the unit cell on which the uranate structures have been described. The two smaller cubes are octants of the cubic unit cell on which the perovskite structure is normally described. The cube corners are occupied by alkaline earth metal ions which are coordinated by twelve oxygen atoms. Their centres are alternately occupied by a uranium ion and an alkaline earth metal ion, each surrounded by an octahedral configuration of six O atoms. The position of these O atoms is slightly off the centre of the cube faces in the direction of the uranium ion. This idealized structure is supposed to be purely ionic and this results in the U–O–Ca bonds being exactly collinear.

It is clear from Fig.2, which is a perspective drawing of the actual Ca_3UO_6 structure, that the essential features of the idealized structure have been retained. The structure is however, markedly deformed. In particular the U-O-Ca bonds are no longer collinear, but make an average angle of approximatly 140°. This is caused by the covalent character of these bonds which, by using the non-collinear 2p orbitals of the O atom, are prevented from being at an angle of 180° to each other.

From an inspection of Table 6, it is clear that the six U–O coordinate bonds are not equal. However, some significance can be attached to their average value if the root mean square (r.m.s.) deviation of this value does not appreciably exceed the average standard deviation ($\bar{\sigma}$) of the individual bonds. A list of the appropriate values, together with those of the Ca–O and Sr–O coordinate bonds, appears in Table 7. The r.m.s. deviation of the average U–O bond in Sr₃UO₆ is seen to exceed more than twice the average standard deviation which indicates that no significance can be attached to this value. The other three bond lengths, however, constitute good averages, on the ground of the agreement between their r.m.s. deviation and their average standard deviation.

Table 7	'. Av	erage	val	ues,	root	mean	squa	re d	levid	ations	5
(r.m.s.)	and	avera	ige	stan	dard	deviat	ions	(<i>ō</i>)	of	some	2
				b	onds						

	Distance	$\bar{\sigma}$	r.m.s.
U(Ca)–O	2·12 Å	0∙09 Å	0·12 Å
U(Sr) - O	2.16	0.11	0.21
Ca(1) - O	2.31	0.15	0.08
Sr(1) - O	2.37	0.13	0.17

Assuming an O^{2-} – radius of 1.4 Å, the following ionic radii are obtained: 0.74 Å for U⁶⁺, 0.91 Å for Ca²⁺ and 0.97 Å for Sr²⁺. The latter two radii are shorter than the values normally stated, *i.e.* 0.99 and 1.12 Å for Ca²⁺ and Sr²⁺ respectively (Evans, 1964). This also points to the covalent character of the coordinate bonds. However, in view of their large standard deviations no further significance can be attached to these values.

The author wishes to thank Dr E.H.P.Cordfunke for supplying the uranate samples and Dr B.O.Loopstra for much helpful criticism.

References

- BEREZNIKOVA, I. A., IPPOLITOVA, E. A., SIMANOV, YU. P. & KOVBA, L. M. (1961). *Issled. v Obl. Khim. Urana, Sb. Statei*, p. 151. [C.A., 57, 3064e (1962)].
- CORDFUNKE, E. H. P. & LOOPSTRA, B. O. (1965). To be published.
- CROMER, D. T. & WABER, J. T. (1964). Los Alamos Scientific Laboratory Report LA-3056.
- EVANS, R. C. (1964). An Introduction to Crystal Chemistry, 2nd edition. Cambridge Univ. Press.
- IPPOLITOVA, E. A., BEREZNIKOVA, I. A., KOSYNKIN, V. D., SIMANOV, YU. P. & KOVBA, L. M. (1961). Issled v Obl. Khim. Urana, Sb. Statei, p. 154. [C.A. 57, 3064g (1962)].
 SLEIGHT, A. W. & WARD, R. (1962). Inorg. Chem. 1, 790.